Abstract
A MEMS-FTIR engine has been developed as a key device for the Fourier-Transform Infrared Spectrometer, which consists of a Michelson interferometer including an electro-static actuator to control a moving mirror, an optical fiber groove for incident light and a photodetector. All these elements except for the photodetector are monolithically fabricated in Silicon using MEMS technology. The optical elements such as a beam splitter, a fixed mirror and a moving mirror are formed and aligned simultaneously with high degree of precision by Deep Reactive Ion Etching (DRIE). The vertical side walls are utilized as optical planes so that the incident light path is located in parallel with the Silicon substrate. The moving mirror is driven by an electro-static MEMS actuator. The photodetector is placed above an angled mirror, which is formed by alkaline wet etching exposing the Silicon crystal plane at the end position of light path. All the elements including the photodetector are hermetically covered by a lid of Silicon in the vacuum chamber by using a surface activate bonding technology. In order to reduce the cost, wafer level process and separation of each chip by a laser dicer after all assembly processes are introduced. The realized MEMS-FTIR is 10×17×1 mm in size and a signal noise ratio (SNR) of better than 35dB, which comes from a good verticality of less than 0.2 degree in the vertical side walls as optical planes by managing the DRIE etching conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.