Abstract
Progress toward early diagnosis of cancer would have significant clinical benefits in reducing mortality or prolonging life in cancer patients; thus, there is an important unmet clinical need to image cellular features of cancer in vivo and in real time to correlate pathological symptoms and underlying cells responsible for such symptoms. In this paper, we describe a review of microelectromechanical systems scanners-based endoscopic optical coherence tomography, confocal, two-photon, and photoacoustic microscopy imaging. These advanced optical imaging modalities can provide subcellular (micron-scale) resolution and deep tissue penetration to reveal both cells and molecular features for early cancer diagnosis, cancer staging, and surgical guidance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Selected Topics in Quantum Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.