Abstract

This paper deals with glass surface micromachined antenna of RF energy harvesting for wireless sensor node applications. The research aims to provide a system based on a new integrated RF energy harvester circuitry using a transparent receiving antenna by micromachining process. The energy harvester system is studied using CST-MWS software by Pyrex glass as the antenna substrate having dielectric constant ɛr = 4.6. Besides, PSpice and Cadence analyze the DC output solutions. The fabrication of the micromachined antenna based on metal patterning of the radiator patch and metal sputtering on the top and bottom of the glass surface, respectively. The analysis of the wave propagation of the antenna shows good agreement between the simulation solutions and experimental validations. It is present that the antenna achieved a maximum gain of > 4 dB, reflection coefficient (S11) 100 MHz, omnidirectional radiation pattern and VSWR ratio < 2. From DC analysis, with an ultra-low input power of − 20 dBm incoming from this optimal antenna, the MOSFET rectifier reaches an efficiency of 46.23% and DC output voltage of 2.15 V at 1 MΩ load. Further, the developed antenna integrated into the RF energy harvester on the same circuit platform that yield a highly efficient operating system at 5 GHz ISM band.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.