Abstract
By mimicking the behavior of the human brain, artificial neural systems offer the possibility to further improve computing efficiency and solve the von Neumann bottleneck. In particular, neural systems with perceptual capability expand the application field and lay a good foundation for the construction of perceptual storage and computational systems. However, research on neurons with perceptual functions is still relatively scarce, with most works focusing on optoelectronic synapses. The neuron is important for neuromorphic computing systems because neurons output excitatory or inhibitory stimuli to regulate the weight of synapses. Therefore, the construction of sensory neurons is crucial to expand the application range of brain-like neural computing. Here, an artificial sensory neuron is proposed, which is constructed using a photosensitive bipolar threshold switching memristor based on NdNiO3 (NNO) nanocrystals. These metallic phase nanocrystals can not only enhance the local electric field, but also act as a reservoir for defects (VoS) to guide the growth of conductive filaments and stabilize the performance of the device. They present stable bipolar threshold switching behavior with a low 120 nW set power, and the operating voltages decreased in light due to photocarrier action. A leaky integrate firing (LIF) neuron has been realized, which achieved key biological neuron functions, such as all-or-nothing spiking, threshold-driven firing, refractory period, and spiking frequency modulation. The LIF neurons receiving optical inputs have the properties of an artificial sensory neuron. It could regulate the spiking output frequency at different light densities, which could be used for a ship approaching a port. This work provides a promising hardware implementation towards constructing high-performance artificial intelligence to assist ships at night in a sensory system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.