Abstract
Memristors with nonvolatile memory properties are expected to open the era of neuromorphic computing. However, it remains a huge challenge to develop memristors with high uniformity, high stability, and low power consumption for advanced synaptic bionics. Herein, an electroactive iridium(III) complex Ir-vio was designed and synthesized by incorporating a viologen moiety into its N∧N ligand. Complex Ir-vio showed multiple redox states and high sensitivity to an electrical stimulus. Importantly, two-terminal memristors with Ag/Ir-vio/W structure were successfully fabricated by the solution-processable method, which exhibited multilevel storage characteristics with a low switching threshold voltage of 0.5 V and high ON1/ON2/ON3/OFF current ratio of 105/103/102/1 at a low reading bias of 0.05 V. Moreover, the memristors can mimic synaptic plasticity, indicating that they can act as artificial synapses to construct brain-inspired neural networks. The memristive mechanisms can be ascribed to the interconversion among different charge-transfer and redox states under various electrical stimulus. To the best of our knowledge, this work is the first experimental demonstration of memristors based on iridium(III) complexes, opening a new era for the development of synaptic bionic devices based on organometallic compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.