Abstract

In chaotic neural networks, the rich dynamic behaviors are generated from the contributions of spatio-temporal summation, continuous output function, and refractoriness. However, a large number of spatio-temporal summations in turn make the physical implementation of a chaotic neural network impractical. This paper proposes and investigates a memristor-based chaotic neural network model, which adequately utilizes the memristor with unique memory ability to realize the spatio-temporal summations in a simple way. Furthermore, the associative memory capabilities of the proposed memristor-based chaotic neural network have been demonstrated by conventional methods, including separation of superimposed pattern, many-to-many associations, and successive learning. Thanks to the nanometer scale size and automatic memory ability of the memristors, the proposed scheme is expected to greatly simplify the structure of chaotic neural network and promote the hardware implementation of chaotic neural networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call