Abstract

Different logic circuits based on memristors have been extensively investigated. However, most of these circuits require accurate initialization. A self-learning logic circuit based on mermristors that can achieve various logic gates without initialization is proposed in this paper. Three functional blocks, including a sum block, a learning block, and a compare block, are elaborately designed in the proposed logic circuit. Programmable switches in the sum and compare blocks enable the circuit to perform various logic gates, such as Boolean, IMPLY, and random logical combinations. In these various logical operations, the learning block can automatically obtain different memristance states. The aforementioned logic operations can easily be extended to multi-fan-in logic and logical cascade operations. Circuit designs of an encoder and decoder are considered as application examples. Finally, PSpice simulation results of the logic circuits and extended applications are provided. Simulation results indicate that the proposed circuit can effectively perform different logic operations and exhibits excellent robustness to circuit device variations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call