Abstract

Single-molecule magnets weakly coupled to two ferromagnetic leads act as memory devices in electronic circuits---their response depends on history, not just on the instantaneous applied voltage. We show that magnetic anisotropy introduces a wide separation of timescales between fast and slow relaxation processes in the system, which leads to a pronounced memory dependence in a wide intermediate time regime. We study the response to a harmonically varying bias voltage from slow to rapid driving within a master-equation approach. The system is not purely memristive but shows a partially capacitive response on short timescales. In the intermediate time regime the molecular spin can be used as the state variable in a two-terminal molecular memory device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.