Abstract
Biological nonassociative learning is one of the simplest forms of unsupervised learning in animals and can be categorized into habituation and sensitization according to mechanism. This paper proposes a memristive circuit that is based on nonassociative learning and can adapt to repeated inputs, reduce power consumption (habituation), and be sensitive to harmful inputs (sensitization). The circuit includes 1) synapse module, 2) neuron module, 3) feedback module. The first module mainly consists of memristors representing synapse weights that vary with corresponding inputs. Memristance is automatically reduced when a harmful stimulus is input, and climbs at the input interval according to the feedback input when repeated stimuli are input. The second module produces spiking voltage when the total input is above the given threshold. The third module can provide feedback voltage according to the frequency and quantity of input stimuli. Simulation results show that the proposed circuit can generate output signals with biological nonassociative learning characteristics, with varying amplitudes depending on the characteristics of input signals. When the frequency and quantity of the input stimuli are high, the degree of habituation and sensitization intensifies. The proposed circuit has good robustness; can reduce the influence of noise, circuit parasitics and circuit aging during nonassociative learning; and simulate the afterimages caused by visual fatigue for application in automatic exposure compensation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Biomedical Circuits and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.