Abstract
A large number of studies have shown that astrocytes can be combined with the presynaptic terminals and postsynaptic spines of neurons to constitute a triple synapse via an endocannabinoid retrograde messenger to achieve a self-repair ability in the human brain. Inspired by the biological self-repair mechanism of astrocytes, this work proposes a self-repairing neuron network circuit that utilizes a memristor to simulate changes in neurotransmitters when a set threshold is reached. The proposed circuit simulates an astrocyte-neuron network and comprises the following: 1) a single-astrocyte-neuron circuit module; 2) an astrocyte-neuron network circuit; 3) a module to detect malfunctions; and 4) a neuron PR (release probability of synaptic transmission) enhancement module. When faults occur in a synapse, the neuron module becomes silent or near silent because of the low PR of the synapses. The circuit can detect faults automatically. The damaged neuron can be repaired by enhancing the PR of other healthy neurons, analogous to the biological repair mechanism of astrocytes. This mechanism helps to repair the damaged circuit. A simulation of the circuit revealed the following: 1) as the number of neurons in the circuit increases, the self-repair ability strengthens and 2) as the number of damaged neurons in the astrocyte-neuron network increases, the self-repair ability weakens, and there is a significant degradation in the performance of the circuit. The self-repairing circuit was used for a robot, and it effectively improved the robots' performance and reliability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.