Abstract

With the rapid emergence of in-memory computing systems based on memristive technology, the integration of such memory devices in large-scale architectures is one of the main aspects to tackle. In this work we present a study of HfO 2-based memristive devices for their integration in large-scale CMOS systems, namely 200 mm wafers. The DC characteristics of single metal–insulator–metal devices are analyzed taking under consideration device-to-device variabilities and switching properties. Furthermore, the distribution of the leakage current levels in the pristine state of the samples are analyzed and correlated to the amount of formingless memristors found among the measured devices. Finally, the obtained results are fitted into a physic-based compact model that enables their integration into larger-scale simulation environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.