Abstract
PURPOSE: Despite its potential for improvements through supervision, deep learning-based registration approaches are difficult to train for large deformations in 3D scans due to excessive memory requirements. METHODS: We propose a new 2.5D convolutional transformer architecture that enables us to learn a memory-efficient weakly supervised deep learning model for multi-modal image registration. Furthermore, we firstly integrate a volume change control term into the loss function of a deep learning-based registration method to penalize occurring foldings inside the deformation field. RESULTS: Our approach succeeds at learning large deformations across multi-modal images. We evaluate our approach on 100 pair-wise registrations of CT and MRI whole-heart scans and demonstrate considerably higher Dice Scores (of 0.74) compared to a state-of-the-art unsupervised discrete registration framework (deeds with Dice of 0.71). CONCLUSION: Our proposed memory-efficient registration method performs better than state-of-the-art conventional registration methods. By using a volume change control term in the loss function, the number of occurring foldings can be considerably reduced on new registration cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computer Assisted Radiology and Surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.