Abstract

The memory-dependent derivative (MDD) is a new substitution for the fractional derivative (FD). It reflects the memory effect in a more distinct way. As an application, the representative heat diffusion process is remodeled with it. In fact, due to the existence of heat-conduction paradox, the time-space evolution mechanisms of this process are challenges to the modelers. The paradox cann’t be ascribed to the classical Fourier law, and the results show that the newly-constructed temporal MDD model is more reasonable than the Maxwell-Cattaneo, the temporal FD, the spatial FD and the common ones. Moreover, different mediums may accord with different memory times and weighted functions. This freedom of choice reflects the flexibility of MDD in modelling. It can be borrowed for exploring other diffusion problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.