Abstract

In this paper, a memory-based Gaussian Mixture Model (MGMM) is proposed inspired by the way human perceives the environment. The human memory mechanism is introduced to model the background, which can make the model remember what the scene has ever been and help the model adapt to the variation of the scene more quickly. Experimental results show the effect of the memory mechanism in segmenting moving objects with sudden partial changes in the background scene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.