Abstract

Control applications are often implemented on highly cost-sensitive and resource-constrained embedded platforms, such as microcontrollers with a small on-chip memory. Typically, control algorithms are designed using model-based approaches, where the details of the implementation platform are completely ignored. As a result, optimizations that integrate platform-level characteristics into the control algorithms design are largely missing. With the emergence of cyber-physical systems (CPS)-oriented thinking, there has lately been a strong interest in co-design of control algorithms and their implementation platforms, leading to work on networked control systems and computation-aware control algorithms design. However, there has so far been no work on integrating the characteristics of a memory architecture into the design of control algorithms. In this paper we, for the first time, show that accounting for the impact of on-chip memory (or cache) reuse on the performance of control applications motivates new techniques for control algorithms design. This leads to significant improvement in quality of control for given resource availability, or more efficient implementations of embedded control applications. We believe that this paper opens up a variety of possibilities for memory-related optimizations of embedded control systems, that will be pursued by researchers working on computer-aided design for CPS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.