Abstract

The objective of this paper is self-supervised learning from video, in particular for representations for action recognition. We make the following contributions: (i) We propose a new architecture and learning framework Memory-augmented Dense Predictive Coding (MemDPC) for the task. It is trained with a predictive attention mechanism over the set of compressed memories, such that any future states can always be constructed by a convex combination of the condensed representations, allowing to make multiple hypotheses efficiently. (ii) We investigate visual-only self-supervised video representation learning from RGB frames, or from unsupervised optical flow, or both. (iii) We thoroughly evaluate the quality of the learnt representation on four different downstream tasks: action recognition, video retrieval, learning with scarce annotations, and unintentional action classification. In all cases, we demonstrate state-of-the-art or comparable performance over other approaches with orders of magnitude fewer training data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.