Abstract

We study the memory requirements of self-stabilizing leader election (SSLE) protocols. We are mainly interested in two types of systems: anonymous systems and id-based systems. We consider two classes of protocols: deterministic ones and randomized ones. We prove that a non-constant lower bound on the memory space is required by a SSLE protocol on unidirectional, anonymous rings (even if the protocol is randomized). We show that, if there is a deterministic protocol solving a problem on id-based systems where the processor memory space is constant and the id-values are not bounded then there is a deterministic protocol on anonymous systems using constant memory space that solves the same problem. Thus impossibility results on anonymous rings (i.e. one may design a deterministic SSLE protocol, only on prime size rings, under a centralized daemon) can be extended to those kinds of id-based rings. Nevertheless, it is possible to design a silent and deterministic SSLE protocol requiring constant memory space on unidirectional, id-based rings where the id-values are bounded. We present such a protocol. We also present a randomized SSLE protocol and a token circulation protocol under an unfair, distributed daemon on anonymous and unidirectional rings of any size. We give a lower bound on memory space requirement proving that these protocols are space optimal. The memory space required is constant on average. Keyword: self-stabilization, leader election, mutual exclusion, decidability, memory space requirement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call