Abstract

Memory loss, one of the most dreaded afflictions of the human condition, presents considerable burden on the world's health care system and it is recognized as a major challenge in the elderly. There are only a few neuromodulation treatments for memory dysfunctions. Open loop deep brain stimulation is such a treatment for memory improvement, but with limited success and conflicting results. In recent years closed-loop neuroprosthesis systems able to simultaneously record signals during behavioral tasks and generate with the use of internal neural factors the precise timing of stimulation patterns are presented as attractive alternatives and show promise in memory enhancement and restoration. A few such strides have already been made in both animals and humans, but with limited insights into their mechanisms of action. Here, I discuss why a deep neuromimetic computing approach linking multiple levels of description, mimicking the dynamics of brain circuits, interfaced with recording and stimulating electrodes could enhance the performance of current memory prosthesis systems, shed light into the neurobiology of learning and memory and accelerate the progress of memory prosthesis research. I propose what the necessary components (nodes, structure, connectivity, learning rules, and physiological responses) of such a deep neuromimetic model should be and what type of data are required to train/test its performance, so it can be used as a true substitute of damaged brain areas capable of restoring/enhancing their missing memory formation capabilities. Considerations to neural circuit targeting, tissue interfacing, electrode placement/implantation, and multi-network interactions in complex cognition are also provided.

Highlights

  • I discuss why a deep neuromimetic computing approach linking multiple levels of description, mimicking the dynamics of brain circuits, interfaced with recording and stimulating electrodes could enhance the performance of current memory prosthesis systems, shed light into the neurobiology of learning and memory and accelerate the progress of memory prosthesis research

  • Despite its memory improvement success, the closed-loop stimulation system was completely “blind” to the neurobiology of learning and memory offering no insights into the biophysical mechanisms of action of deep-brain stimulation (DBS) stimulation of the human lateral medial temporal lobe (MTL) when participants perform a memory recall task

  • I propose that a computational deep neuromimetic circuit approach empowered with biophysically realistic learning rules mimicking the neural dynamics of memory related circuits amenable to neuromorphic very large scale integration (VLSI) hardware driven by in-vivo multi-electrode array (MEA) recordings, able to decode memory engrams and stimulate memory related populations of neurons should be adopted to move forward the memory prosthesis research

Read more

Summary

Introduction

Despite its memory improvement success, the closed-loop stimulation system was completely “blind” to the neurobiology of learning and memory offering no insights into the biophysical mechanisms of action of DBS stimulation of the human lateral MTL when participants perform a memory recall task.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.