Abstract

Memory function declines in normal aging, in a relatively continuous fashion following middle-age. The effect of aging on decision-making is less well-understood, with seemingly conflicting results on both the nature and direction of these age effects. One route for clarifying these mixed findings is to understand how age-related differences in memory affect decisions. Recent work has proposed memory sampling as a specific computational role for memory in decision-making, alongside well-studied mechanisms of reinforcement learning (RL). Here, we tested the hypothesis that age-related declines in episodic memory alter memory sampling. Participants (total N = 361; ages 18–77) performed one of two variants of a standard reward-guided decision experiment with additional trial-unique mnemonic content and a separately-administered task for assessing memory precision. When we fit participants’ choices with a hybrid computational model implementing both memory-based and RL-driven valuation side-by-side, we found that memory precision tracked the contribution of memory sampling to choice. At the same time, age corresponded to decreasing influence of RL and increasing perseveration. A second experiment confirmed these results and further revealed that memory precision tracked the specificity of memories selected for sampling. Together, these findings suggest that differences in decision-making across the lifespan may be related to memory function, and that interventions which aim to improve the former may benefit from targeting the latter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call