Abstract

While children form an attachment to their abusive caregiver, they are susceptible to mental illness and brain abnormalities. To understand this important clinical issue, we have developed a rat animal model of abusive attachment where odor paired with shock paradoxically produces an odor preference. Here, we extend this model to a seminaturalistic paradigm using a stressed, "abusive" mother during an odor presentation and assess the underlying learning neural circuit. We used a classical conditioning paradigm pairing a novel odor with a stressed mother that predominantly abused pups to assess olfactory learning in a seminaturalistic environment. Additionally, we used Fos protein immunohistochemistry to assess brain areas involved in learning this pain-induced odor preference within a more controlled maltreatment environment (odor-shock conditioning). Odor-maternal maltreatment pairings within a seminatural setting and odor-shock pairings both resulted in paradoxical odor preferences. Learning-induced gene expression was altered in the olfactory bulb and anterior piriform cortex (part of olfactory cortex) but not the amygdala. Infants appear to use a unique brain circuit that optimizes learned odor preferences necessary for attachment. A fuller understanding of infant brain function may provide insight into why early maltreatment affects psychiatric well-being.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.