Abstract

Interactions with neocortical memory systems may facilitate flexible information processing by hippocampus. We sought direct evidence for such memory influences by recording hippocampal neural responses to a change in cognitive strategy. Well-trained rats switched (within a single recording session) between the use of place and response strategies to solve a plus maze task. Maze and extramaze environments were constant throughout testing. Place fields demonstrated (in-field) firing rate and location-based reorganization [Leutgeb, S., Leutgeb, J. K., Barnes, C. A., Moser, E. I., McNaughton, B. L., & Moser, M. B. (2005). Independent codes for spatial and episodic memory in hippocampal neuronal ensembles. Science, 309, 619–623] after a task switch, suggesting that hippocampus encoded each phase of testing as a different context, or episode. The task switch also resulted in qualitative and quantitative changes to discharge that were correlated with an animal’s velocity or acceleration of movement. Thus, the effects of a strategy switch extended beyond the spatial domain, and the movement correlates were not passive reflections of the current behavioral state. To determine whether hippocampal neural responses were unique, striatal place and movement-correlated neurons were simultaneously recorded with hippocampal neurons. Striatal place and movement cells exhibited a response profile that was similar, but not identical, to that observed for hippocampus after a strategy switch. Thus, retrieval of a different memory led both neural systems to represent a different context. However, hippocampus may play a special (though not exclusive) role in flexible spatial processing since correlated firing amongst cell pairs was highest when rats successfully switched between two spatial tasks. Correlated firing by striatal cell pairs increased following any strategy switch, supporting the view that striatum codes change in reinforcement contingencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.