Abstract

We study the Brownian dynamics of hard spheres under spatially inhomogeneous shear, using event-driven Brownian dynamics simulations and power functional theory. We examine density and current profiles both for steady states and for the transient dynamics after switching on and switching off an external square wave shear force field. We find that a dense hard sphere fluid (volume fraction ≈0.35) undergoes global motion reversal after switching off the shear force field. We use power functional theory with a spatially nonlocal memory kernel to describe the superadiabatic force contributions and obtain good quantitative agreement of the theoretical results with simulation data. The theory provides an explanation for the motion reversal: internal superadiabatic nonequilibrium forces that oppose the externally driven current arise due to memory after switching off. The effect is genuinely viscoelastic: in steady state, viscous forces oppose the current, but they elastically generate an opposing current after switch-off.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call