Abstract

To date, there is no clear evidence for memory formation. In this article, we provide a framework to understand how memory is formed. The information collected by sensory organs is converted to a digital current that enters the presynaptic neuron through axonal conductance. Digital waves are converted to analog waves in the synapses.The analog current of information flows into the postsynapse. The degree of Ca2+ influx in the postsynapse is proportional to the voltage of each wave of analog current. The activation (via dephosphorylation) of the phosphorylated phosphatase, Slingshot, is regulated by Ca2+ concentration in the spine. After dephosphorylation by Slingshot, activated cofilin binds the parallel actin bundle. The wide helical twist angle of an actin filament that has been decorated with cofilin confers high electric potential to the filament. Phosphorylation results in the deactivation of the actin filament bound to cofilin, which in turn results in the cleavage of cofilin and actin filament, followed by a decrease in the twist angle of the actin filament. Next, the electric potential energy is discharged by the actin filament as it returns to its non-cofilin bound state, resulting in the formation of additional analog waves in the postsynapse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call