Abstract
Nowadays the performance gap between processors and main memory makes an efficient usage of the memory hierarchy necessary for good program performance. Several techniques have been proposed for this purpose. Nevertheless most of them consider only regular access patterns, while many scientific and numerical applications give place to irregular patterns. A typical case is that of indirect accesses due to the use of compressed storage formats for sparse matrices. This paper describes an analytic approach to model both regular and irregular access patterns. The application modeled is an optimized sparse matrix-dense matrix product algorithm with several levels of blocking. Our model can be directly applied to any memory hierarchy consisting of K-way associative caches. Results are shown for several current microprocessor architectures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.