Abstract

The cellular mechanisms supporting plasticity during memory consolidation have been a subject of considerable interest. De novo protein and mRNA synthesis in several brain areas are critical, and more recently protein degradation, mediated by the ubiquitin-proteasome system (UPS), has been shown to be important. Previous work clearly establishes a relationship between protein synthesis and protein degradation in the amygdala, but it is unclear whether cortical mechanisms of memory consolidation are similar to those in the amygdala. Recent work demonstrating a critical role for prefrontal cortex (PFC) in the acquisition and consolidation of fear memory allows us to address this question. Here we use a PFC-dependent fear conditioning protocol to determine whether UPS mediated protein degradation is necessary for memory consolidation in PFC. Groups of rats were trained with auditory delay or trace fear conditioning and sacrificed 60 min after training. PFC tissue was then analyzed to quantify the amount of polyubiquibated protein. Other animals were trained with similar procedures but were infused with either a proteasome inhibitor (clasto-lactacystin β-lactone) or a translation inhibitor (anisomycin) in the PFC immediately after training. Our results show increased UPS-mediated protein degradation in the PFC following trace but not delay fear conditioning. Additionally, post-training proteasome or translation inhibition significantly impaired trace but not delay fear memory when tested the next day. Our results further support the idea that the PFC is critical for trace but not delay fear conditioning and highlight the role of UPS-mediated degradation as critical for synaptic plasticity.

Highlights

  • Pavlovian fear conditioning has proven to be exceptionally useful in elucidating the molecular mechanisms underlying learning and memory

  • The present study may be the first to demonstrate the critical involvement of ubiquitin-proteasome mediated protein degradation in the consolidation of a memory that depends on the prefrontal cortex (PFC)

  • We found an increase in degradation specific polyubiquitination in the PFC following trace but not DFC

Read more

Summary

Introduction

Pavlovian fear conditioning has proven to be exceptionally useful in elucidating the molecular mechanisms underlying learning and memory. This procedure involves the association of a conditional stimulus (CS) with an aversive unconditional stimulus (UCS). Several studies have shown that the consolidation of fear memory depends on mRNA transcription and translation of new protein in the amygdala and that inhibiting these processes prevents the formation of a stable fear memory (Bailey et al, 1999; Parsons et al, 2006; Helmstetter et al, 2008; Kwapis et al, 2011). Protein degradation triggered by neural activity may be a key factor in making synapses labile, which is crucial for both memory consolidation and “reconsolidation” (Jarome and Helmstetter, 2013)

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.