Abstract
Memory requirements (for storing intermediate signals) and critical path are essential issues for 2-D (or multidimensional) transforms. This paper presents new algorithms and hardware architectures to address the above issues in 2-D dual-mode (supporting 5/3 lossless and 9/7 lossy coding) lifting-based discrete wavelet transform (LDWT). The proposed 2-D dual-mode LDWT architecture has the merits of low transpose memory (TM), low latency, and regular signal flow, making it suitable for very large-scale integration implementation. The TM requirement of the <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">N×N</i> 2-D 5/3 mode LDWT and 2-D 9/7 mode LDWT are 2 <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">N</i> and 4 <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">N</i> , respectively. Comparison results indicate that the proposed hardware architecture has a lower lifting-based low TM size requirement than the previous architectures. As a result, it can be applied to real-time visual operations such as JPEG2000, motion-JPEG2000, MPEG-4 still texture object decoding, and wavelet-based scalable video coding applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems for Video Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.