Abstract
Stochastic Context-Free Grammars (SCFG) has been shown to be effective in modelling RNA secondary structure for searches. Our previous work (Cai et al., 2003) in Stochastic Parallel Communicating Grammar Systems (SPCGS) has extended SCFG to model RNA pseudoknots. However, the alignment algorithm requires O(n4) memory for a sequence of length n. In this paper, we develop a memory efficient algorithm for sequence-structure alignments including pseudoknots. This new algorithm reduces the memory space requirement from O(n4) to O(n2) without increasing the computation time. Our experiments have shown that this novel approach can achieve excellent performance on searching for RNA pseudoknots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Bioinformatics Research and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.