Abstract

Free-standing monodomain liquid crystal elastomer samples are shown to have a complete memory of the orientational configuration at the time of cross-linking. This memory is demonstrated through samples in which the parent polymer system is first aligned in a magnetic field prior to cross-linking. These films show reversible nematic-isotropic phase transitions and x-ray scattering patterns characteristic of nematic phases. The liquid crystal elastomer films exhibit a remarkable memory effect, in that the sample may be held at temperatures well above the nematic-isotropic transition for extended periods ( > 2 weeks), but on cooling into the liquid crystal phase region, both the original director alignment and the degree of preferred orientation are recovered. It is demonstrated that these novel memory effects are equilibrium in nature. The origins of this phenomena in terms of coupling between the mesogenic side-chains and the polymer network are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call