Abstract

Nanocomposites comprising a ferromagnet and an antiferromagnet have drawn attention recently because of their interesting physical properties and variety of technological applications. In the present work, structural, hyperfine and magnetic properties of Fe/Co3O4 nanocomposites prepared by a chemical route having 10–70 wt.% of Fe, have been investigated. XRD and TEM measurements confirmed polycrystalline nature of the samples having grain size in the nanometer regime. FTIR measurements show the presence of two bands of Co–O corresponding to Co2+ and Co3+. Mössbauer spectra recorded at room temperature confirm the presence of Fe in the blocked state. Presence of exchange bias at Fe–Co3O4 interfaces is confirmed by the magnetization measurements. Irreversibility in temperature dependent FC–ZFC measurements points to interface effect. Frequency dependent ac susceptibility measurements as well as memory effect observed in dc magnetization measurements indicate the superspin glass nature of the nanocomposites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.