Abstract

We use continuous, stochastic quantum trajectories within a framework of quantum state diffusion (QSD) to describe alternating measurements of two noncommuting observables. Projective measurement of an observable completely destroys memory of the outcome of a previous measurement of the conjugate observable. In contrast, measurement under QSD is not projective and it is possible to vary the rate at which information about previous measurement outcomes is lost by changing the strength of measurement. We apply our methods to a spin 1/2 system and a spin 1 system undergoing alternating measurements of the Sz and Sx spin observables. Performing strong Sz measurements and weak Sx measurements on the spin 1 system, we demonstrate return to the same eigenstate of Sz to a degree beyond that expected from projective measurements and the Born rule. Such a memory effect appears to be greater for return to the ±1 eigenstates than the 0 eigenstate. Furthermore, the spin 1 system follows a measurement cascade process where an initial superposition of the three eigenstates of the observable evolves into a superposition of just two, before finally collapsing into a single eigenstate, giving rise to a distinctive pattern of evolution of the spin components. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.