Abstract

Temperature behavior and memory effect in standard spin valves (SV) and SVs with synthetic antiferromagnetic (Co/Ru/Co) (SV-SAF) subsystems have been studied. SV-SAFs show much better temperature stability. Memory effect refers to the phenomenon that the exchange bias can be altered at temperatures (TR’s) much lower than the blocking temperature (TB), and these temperatures (TR’s) are imprinted into SVs. The memory effect greatly deteriorates the magnetoresistance behaviors in SV. Our results suggest that the memory effect is caused by a distribution of local blocking temperatures (Tb’s). The magnetization state in the pinned layer is critical in determining the temperature behavior of HE and magnetoresistance. By partially reversing the magnetization in the pinned ferromagnetic (FM) layers, we are able to separate the temperature dependencies of the local exchange bias (He) associated with regions consisting of different Tb’s. Two features have been observed: (1) the local exchange bias (He) with a narrow Tb distribution has a weak temperature dependence; (2) the simple algebraic sum of local He’s nearly reproduce the total HE with the difference between these two quantities representing the domain wall energy in the FM layer. On the other hand, SV-SAFs show strong resistance to memory effects because of two factors; the strong exchange coupling through the Ru layer, and the net magnetic moment of Co/Ru/Co layers in SV-SAF being close to zero. The former makes the two SV-SAF FM layers behave coherently, while the latter makes the interaction between the SV-SAF and the external field negligibly small.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.