Abstract

While resource management and task scheduling are identified challenges of Grid computing, current Grid scheduling systems mainly focus on CPU and network availability. Recent performance improvement of CPU and computer network has made memory usage a significant factor of overall performance. In this study, we consider memory availability as a performance factor and introduce memory conscious task partition and scheduling. Three task partition policies are discussed. They are CPU-based, memory-based, and CPU-memory combined partition. We first investigate the three task partition policies on dedicated resources and verify the effectiveness of the CPU-memory combined partition algorithm in finding an optimal solution. We then extend the task partition policies in non-dedicated environments with the consideration of resource sharing. Analytical and experimental results show that the CPU-memory combined scheduling approach outperforms either the CPU-based or memory-based scheduling approach considerably for memory-intensive applications in Grid environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.