Abstract

Arguably, many data-intensive applications pose significant challenges to conventional architectures and memory systems, especially when applications exhibit non-contiguous, irregular, and small memory access patterns. The long memory access latency can dramatically slow down the overall performance of applications. The growing desire of high memory bandwidth and low latency access stimulate the advent of novel 3D-staked memory devices such as the Hybrid Memory Cube (HMC), which provides significantly higher bandwidth compared with the conventional JEDEC DDR devices. Even though many existing studies have been devoted to achieving high bandwidth throughput of HMC, the bandwidth potential cannot be fully exploited due to the lack of highly efficient memory coalescing and interfacing methodology for HMC devices. In this research, we introduce a novel memory coalescer methodology that facilitates memory bandwidth efficiency and the overall performance through an efficient and scalable memory request coalescing interface for HMC. We present the design and implementation of this approach on RISC-V embedded cores with attached HMC devices. Our evaluation results show that the new memory coalescer eliminates 47.47% memory accesses to HMC and improves the overall performance by 13.14% on average.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.