Abstract

The planar Hall effect (PHE) has been studied in short period (Ga, Mn)As/GaAs superlattices displaying a ferromagnetic interlayer coupling between the magnetic layers. Complex dependence of the PHE on applied magnetic field is explained by taking into account the magnetocrystalline anisotropy of the (Ga, Mn)As layers, which results from biaxial compressive strain in the layers epitaxially grown on GaAs. Two-state behavior of the planar Hall resistance at zero magnetic field provides its usefulness for applications in nonvolatile memory devices. In addition, using an appropriate sequence of applied magnetic fields four different states of the planar Hall resistance, suitable for quaternary memory devices, can be realized owing to the formation of a stable multidomain structure in the Hall bar.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call