Abstract
Most papers about evolutionary games on graph assume agents have no memory. Yet, in the real world, interaction history can also affect an agent’s decision. So we introduce a memory-based agent model and investigate the Prisoner’s Dilemma game on a Heterogeneous Newman–Watts small-world network based on a Genetic Algorithm, focusing on heterogeneity’s role in the emergence of cooperative behaviors. In contrast with previous results, we find that a different heterogeneity parameter domain range imposes an entirely different impact on the cooperation fraction. In the parameter range corresponding to networks with extremely high heterogeneity, the decrease in heterogeneity greatly promotes the proportion of cooperation strategy, while in the remaining parameter range, which relates to relatively homogeneous networks, the variation of heterogeneity barely affects the cooperation fraction. Also our study provides a detailed insight into the microscopic factors that contribute to the performance of cooperation frequency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.