Abstract

A new algorithm, dubbed memory-based adaptive partitioning (MAP) of search space, which is intended to provide a better accuracy/speed ratio in the convergence of multi-objective evolutionary algorithms (MOEAs) is presented in this work. This algorithm works by performing an adaptive-probabilistic refinement of the search space, with no aggregation in objective space. This work investigated the integration of MAP within the state-of-the-art fast and elitist non-dominated sorting genetic algorithm (NSGAII). Considerable improvements in convergence were achieved, in terms of both speed and accuracy. Results are provided for several commonly used constrained and unconstrained benchmark problems, and comparisons are made with standalone NSGAII and hybrid NSGAII-efficient local search (eLS).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.