Abstract
This paper makes the case that pin bandwidth will be a critical consideration for future microprocessors. We show that many of the techniques used to tolerate growing memory latencies do so at the expense of increased bandwidth requirements. Using a decomposition of execution time, we show that for modern processors that employ aggressive memory latency tolerance techniques, wasted cycles due to insufficient bandwidth generally exceed those due to raw memory latencies. Given the importance of maximizing memory bandwidth, we calculate effective pin bandwidth, then estimate optimal effective pin bandwidth. We measure these quantities by determining the amount by which both caches and minimal-traffic caches filter accesses to the lower levels of the memory hierarchy. We see that there is a gap that can exceed two orders of magnitude between the total memory traffic generated by caches and the minimal-traffic caches---implying that the potential exists to increase effective pin bandwidth substantially. We decompose this traffic gap into four factors, and show they contribute quite differently to traffic reduction for different benchmarks. We conclude that, in the short term, pin bandwidth limitations will make more complex on-chip caches cost-effective. For example, flexible caches may allow individual applications to choose from a range of caching policies. In the long term, we predict that off-chip accesses will be so expensive that all system memory will reside on one or more processor chips.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.