Abstract

Abstract Memory B cells (MBC) are a heterogenous population that consist of immunoglobin class switched and non-class switched MBC, and these populations can arise via germinal center dependent or independent mechanisms. The timing of MBC development influences the fate outcome of MBC populations. These different populations of MBC are regulated by cell signaling, but it is not clearly defined what epigenetic factors influence MBC differentiation. EZH2 is an important histone methyltransferase that catalyzes H3K27me3 resulting in gene repression. EZH2 has been shown to regulate B cell differentiation into germinal centers and plasma cells; however, it is unknown if EZH2 regulates MBC development. To address this, a knockout model has been established where EZH2 is conditionally deleted using the CD19 and AICDA driven CRE expression. Here we used the influenza PR8 model to ascertain the kinetics of MBC differentiation and formation in the spleen, dLN, and lungs following a live infection in wild-type and EZH2-KO cohorts. Using B cell tetramers, antigen-specific MBC will be analyzed to define the kinetics of MBC development and determine the similarities and differences between the different populations of MBC. Overall, these data define the early kinetics of MBC establishment and the developmental timing that EZH2-dependent H3K27me3 remodeling is required for MBC formation. Supported by NIH/NIAID to CDS (R01 AI148471)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call