Abstract
Application examples of a memory and CPU efficient coherent mode decomposition (CMD) method for wave-optics based simulation of the partially coherent undulator radiation propagation through a hard X-ray beamline in a 3rd generation synchrotron radiation source are presented. The high efficiency of the method is achieved thanks to the analytical treatment of the common quadratic phase terms that are developed in the phase of cross-spectral density (CSD) of partially coherent radiation at a distance from source. This treatment allows for a considerable, several orders of magnitude, reduction of the 4D CSD mesh density (and the memory occupied by the CSD) required for ensuring sufficient accuracies of wavefront propagation simulations with the modes produced by the CMD at a beamline entrance. This method, implemented in the "Synchrotron Radiation Workshop" open-source software, dramatically increases the feasibility of the CMD of 4D CSD for producing 2D coherent modes for a large variety of applications at storage rings and other types of radiation sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.