Abstract
A discrete-time random process is described, which can generate bursty sequences of events. A Bernoulli process, where the probability of an event occurring at time t is given by a fixed probability x, is modified to include a memory effect where the event probability is increased proportionally to the number of events that occurred within a given amount of time preceding t. For small values of x the interevent time distribution follows a power law with exponent -2-x. We consider a dynamic network where each node forms, and breaks connections according to this process. The value of x for each node depends on the fitness distribution, ρ(x), from which it is drawn; we find exact solutions for the expectation of the degree distribution for a variety of possible fitness distributions, and for both cases where the memory effect either is, or is not present. This work can potentially lead to methods to uncover hidden fitness distributions from fast changing, temporal network data, such as online social communications and fMRI scans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physical review. E, Statistical, nonlinear, and soft matter physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.