Abstract

Stencils computations are a class of computations commonly found in scientific and engineering applications. They have relatively lower arithmetic intensity. Therefore, their performance is greatly affected by memory access. This paper studies the issue of memory access optimization for the key stencil computations of a high-order CFD program on the NVidia GPU. Two methods are used to optimize the performance. First, we use registers to cache the data used by the stencil computations in the kernel. We use the CUDA warp shuffle functions to exchange data between neighboring grid points, and adjust the thread computation granularity to increase the data reuse. Second, we use the shared memory to buffer the grid data used by the stencil computations in the kernel, and utilize loop tiling to reduce redundant accesses to the global memory. Performance evaluation is done on an NVidia Tesla K80 GPU. The results show that compared to the original implementation that only uses the global memory, the optimized implementation that utilizes the registers achieves a maximum speedup of 2.59 and 2.79 relatively for 15M and 60M grids, and the optimized implementation that utilizes the shared memory achieves a maximum speedup of 3.51 and 3.36 relatively for 15M and 60M grids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.