Abstract

Computational Fluid Dynamics – Discrete Element Method is used to model gas-solid systems in several applications in energy, pharmaceutical and petrochemical industries. Computational performance bottlenecks often limit the problem sizes that can be simulated at industrial scale. The data structures used to store several millions of particles in such large-scale simulations have a large memory footprint that does not fit into the processor cache hierarchies on current high-performance-computing platforms, leading to reduced computational performance. This paper specifically addresses this aspect of memory access bottlenecks in industrial scale simulations. The use of space-filling curves to improve memory access patterns is described and their impact on computational performance is quantified in both shared and distributed memory parallelization paradigms. The Morton space filling curve applied to uniform grids and k-dimensional tree partitions are used to reorder the particle data-structure thus improving spatial and temporal locality in memory. The performance impact of these techniques when applied to two benchmark problems, namely the homogeneous-cooling-system and a fluidized-bed, are presented. These optimization techniques lead to approximately two-fold performance improvement in particle focused operations such as neighbor-list creation and data-exchange, with ∼ 1.5 times overall improvement in a fluidization simulation with 1.27 million particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call