Abstract

The main objective of this work is to automatically design neural network models with sigmoid basis units for binary classification tasks. The classifiers that are obtained achieve a double objective: a high classification level in the dataset and a high classification level for each class. We present MPENSGA2, a Memetic Pareto Evolutionary approach based on the NSGA2 multiobjective evolutionary algorithm which has been adapted to design Artificial Neural Network models, where the NSGA2 algorithm is augmented with a local search that uses the improved Resilient Backpropagation with backtracking— IRprop+ algorithm. To analyze the robustness of this methodology, it was applied to four complex classification problems in predictive microbiology to describe the growth/no-growth interface of food-borne microorganisms such as Listeria monocytogenes, Escherichia coli R31, Staphylococcus aureus and Shigella flexneri. The results obtained in Correct Classification Rate ( CCR), Sensitivity ( S) as the minimum of sensitivities for each class, Area Under the receiver operating characteristic Curve ( AUC), and Root Mean Squared Error ( RMSE), show that the generalization ability and the classification rate in each class can be more efficiently improved within a multiobjective framework than within a single-objective framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.