Abstract
The main objective of this research is to automatically design Artificial Neural Network models with sigmoid basis units for multiclassification tasks in predictive microbiology. The classifiers obtained achieve a double objective: a high classification level in the dataset and high classification levels for each class. The Memetic Pareto Differential Evolution Neural Network chosen to learn the structure and weights of the Neural Networks is a Differential Evolutionary approach based on the Pareto Differential Evolution multiobjective evolutionary algorithm. The Pareto Differential Evolution algorithm is augmented with a local search using the improved Resilient Backpropagation with backtracking–iRprop + algorithm. To analyze the robustness of this methodology, it has been applied to two complex classification problems in predictive microbiology (Staphylococcus aureus and Shigella flexneri). The results obtained show that the generalization ability and the classification rate in each class can be more efficiently improved within this multiobjective algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.