Abstract
Dynamic multi-objective optimization (DMO) is a challenging class of problems where the objective and/or the constraint function(s) change over time. DMO has received little attention in the past and none of the existing multi-objective optimization algorithms have performed too well on the set DMO test problems. In this paper, we introduce a memetic algorithm (MA) embedded with a sequential quadratic programming (SQP) solver for faster convergence and an orthogonal epsilon-constrained formulation is used to deal with two objectives. The performance of the memetic algorithm is compared with an evolutionary algorithm (EA) embedded with a Sub-EA with and without restart mechanisms on two benchmark functions FDA1 and modified FDA2. The memetic algorithm consistently outperforms the evolutionary algorithm for both FDA1 and modified FDA2 problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.