Abstract

AbstractCopolymers of 2,6‐dimethyl‐phenol (DMP) and 2,6‐diphenyl‐phenol (DPP) were synthesized in the initial molar ratio of 100 : 0 (S(PPO)), 90 : 10 (Co‐A), 75 : 25 (Co‐B), 65 : 35 (Co‐C), and 0 : 100 (PDPPO). Dense membranes of 30 μm thickness were tested for single gas permeation and binary mixture separation of 55:45 (in mol %) propylene‐propane at 30°C ± 2°C. Their performance was ultimately examined in the enrichment of propylene from a refinery off‐gas mixture (ROG or also called as absorber tail gas, ATG) having the same composition as the ATG of a fluid catalytic cracking (FCC) unit of HPCL refinery, Visakhapatnam. The mixture contains C1–C5 hydrocarbons and nonhydrocarbons such as CO, CO2, H2, and N2. A detailed permeation study of the hydrocarbon part of ATG revealed that using S(PPO) and Co‐A, propylene could be upgraded from ∼ 29 mol % (on nonhydrocarbon free basis) to 62.2 and 74.4 mol % with propylene/propane selectivity ratio of 5.99 and 8.45, respectively. The structure of polymers was characterized by Fourier transform infrared (FTIR), proton nuclear magnetic resonance (Proton NMR), viscosity measurements. Scanning electron microscope (SEM), wide angle X‐ray diffraction (WAXD), density and fractional free volume measurements were used for studying membrane morphology. Dynamic mechanical thermal analyzer (DMTA) and tensile testing were carried to find glass transition temperature (Tg) and mechanical properties. The relative differences observed in gas permeation of these polymers were correlated with the physical properties measured. S(PPO) and Co‐A were identified as potential materials for the upgradation of propylene from refinery off‐gas streams. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.