Abstract
Membrane-based liquid air fresheners are attracting significant market interest because of their small size and ability to allow continuous delivery of perfume compounds without the need of external energy sources. However, the air freshener membranes that enable the nonenergized delivery are rarely reported in the literature except in patents. For the first time, we investigated a commercial air freshener membrane systematically to provide thorough characterizations of the membrane materials, morphology, and pore information. The interaction between a model perfume containing four compounds and the membrane was also studied through liquid wetting and contact angle measurements. Long-term tests to track the air freshener revealed that the perfume release rate was dependent on the perfume reservoir composition in a controlled external environment. Lastly, perfume transport through the membrane was investigated for the correlation of membrane properties and liquid flux through the membrane. This pioneering ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.