Abstract

Biofuel cells typically yield lower power and are more difficult to fabricate than conventional fuel cells using inorganic catalysts. This work presents a glucose/O2 microfluidic biofuel cell (MBFC) featuring pyrolyzed photoresist film (PPF) electrodes made on silicon wafers using a rapid thermal process, and subsequently encapsulated by rapid prototyping techniques into a double-Y-shaped microchannel made entirely of plastic. A ferrocenium-based polyethyleneimine polymer linked to glucose oxidase (GOx/Fc-C6-LPEI) was used in the anode, while the cathode contained a mixture of laccase, anthracene-modified multi-walled carbon nanotubes, and tetrabutylammonium bromide-modified Nafion (MWCNTs/laccase/TBAB-Nafion). The cell performance was studied under different flow-rates, obtaining a maximum open circuit voltage of 0.54 ± 0.04 V and a maximum current density of 290 ± 28 μA cm(-2) at room temperature under a flow rate of 70 μL min(-1) representing a maximum power density of 64 ± 5 μW cm(-2). Although there is room for improvement, this is the best performance reported to date for a bioelectrode-based microfluidic enzymatic biofuel cell, and its materials and fabrication are amenable to mass production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call