Abstract

Abstract A model of the S-entropy production in a system with a membrane which separates non-electrolyte aqueous solutions was presented. The differences between fluxes in non-homogeneous and homogeneous conditions for volume and solute fluxes, respectively, are non-linear functions of the glucose osmotic pressure difference (OPD) in ranges dependent on the initial ethanol OPD. A decrease of ethanol OPD causes a shift of this range into the lower values of glucose OPD; this shift is also observed for negative values of glucose and ethanol OPDs. The coefficient of concentration polarization of the membrane as a function of glucose OPD has a sigmoidal shape. For suitably great negative values of glucose OPD this coefficient is very small, while for suitably high positive glucose OPD this coefficient is equal to 0.5. An increase of ethanol OPD at the initial moment causes a shift of this curve towards the direction of positive values of glucose OPD. In turn the S-entropy production in non-homogeneous conditions has low values for negative values of glucose OPD (convective range) while for suitably high positive glucose OPD it has greater values (diffusive and convective range). A change of ethanol OPD at the initial moment causes a shift of this curve along the horizontal axis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call