Abstract

The C-terminal end of diphtheria toxin A-fragment was altered and the consequences for toxicity and translocation of the A-fragment to the cytosol were studied. Mutations and deletions in the protease-sensitive, disulfide-bridged region linking the two functional parts of the toxin, the A- and B-fragments, reduced the toxicity of the protein as such, but when the mutant toxins were cleaved ("nicked") by trypsin before being added to cells, the toxicity was restored. Prevention of disulfide formation by removal of Cys186 resulted in complete loss of toxicity. To circumvent the nicking step, toxin was formed by reconstitution from separate A- and B-fragments where the A-fragments varied in the C-terminal sequences. The amino acids C-terminal to Cys186 were found not to be required for translocation. Furthermore, both charged and uncharged residues near the C-terminal end were compatible with translocation. The data indicate that the C-terminal amino acid sequence is not decisive for translocation of diphtheria toxin A-fragment to the cytosol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.